Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 137(1-2): 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35868241

RESUMO

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Metilmalonil-CoA Mutase , Camundongos , Animais , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Edição de Genes , Dependovirus/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Camundongos Knockout , Fígado/metabolismo , Hepatócitos/metabolismo , Albuminas/genética , Albuminas/metabolismo , Ácido Metilmalônico/metabolismo
2.
Am J Transplant ; 21(10): 3280-3295, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33764625

RESUMO

Despite much progress in improving graft outcome during cardiac transplantation, chronic allograft vasculopathy (CAV) remains an impediment to long-term graft survival. MicroRNAs (miRNAs) emerged as regulators of the immune response. Here, we aimed to examine the miRNA network involved in CAV. miRNA profiling of heart samples obtained from a murine model of CAV and from cardiac-transplanted patients with CAV demonstrated that miR-21 was most significantly expressed and was primarily localized to macrophages. Interestingly, macrophage depletion with clodronate did not significantly prolong allograft survival in mice, while conditional deletion of miR-21 in macrophages or the use of a specific miR-21 antagomir resulted in indefinite cardiac allograft survival and abrogated CAV. The immunophenotype, secretome, ability to phagocytose, migration, and antigen presentation of macrophages were unaffected by miR-21 targeting, while macrophage metabolism was reprogrammed, with a shift toward oxidative phosphorylation in naïve macrophages and with an inhibition of glycolysis in pro-inflammatory macrophages. The aforementioned effects resulted in an increase in M2-like macrophages, which could be reverted by the addition of L-arginine. RNA-seq analysis confirmed alterations in arginase-associated pathways associated with miR-21 antagonism. In conclusion, miR-21 is overexpressed in murine and human CAV, and its targeting delays CAV onset by reprogramming macrophages metabolism.


Assuntos
Transplante de Coração , MicroRNAs , Aloenxertos , Animais , Rejeição de Enxerto/genética , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Humanos , Macrófagos , Camundongos , MicroRNAs/genética
3.
Hepatology ; 73(6): 2223-2237, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32976669

RESUMO

BACKGROUND AND AIMS: Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS: Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS: In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/terapia , Dependovirus/genética , Edição de Genes/métodos , Terapia Genética/métodos , Metilmalonil-CoA Mutase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/sangue , Hepatócitos , Neoplasias Hepáticas/patologia , Transplante de Fígado , Malonatos/sangue , Metilmalonil-CoA Mutase/genética , Camundongos , Camundongos Endogâmicos C57BL
4.
Blood ; 125(24): 3720-30, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25931583

RESUMO

MicroRNAs (miRNAs) are a class of powerful posttranscriptional regulators implicated in the control of diverse biological processes, including regulation of hematopoiesis and the immune response. To define the biological functions of miR-142, which is preferentially and abundantly expressed in immune cells, we created a mouse line with a targeted deletion of this gene. Our analysis of miR-142(-/-) mice revealed a critical role for this miRNA in the development and homeostasis of lymphocytes. Marginal zone B cells expand in the knockout spleen, whereas the number of T and B1 B cells in the periphery is reduced. Abnormal development of hematopoietic lineages in miR-142(-/-) animals is accompanied by a profound immunodeficiency, manifested by hypoimmunoglobulinemia and failure to mount a productive immune response to soluble antigens and virus. miR-142(-/-) B cells express elevated levels of B-cell-activating factor (BAFF) receptor (BAFF-R) and as a result proliferate more robustly in response to BAFF stimulation. Lowering the BAFF-R gene dose in miR-142(-/-) mice rescues the B-cell expansion defect, suggesting that BAFF-R is a bona fide miR-142 target through which it controls B-cell homeostasis. Collectively, our results uncover miR-142 as an essential regulator of lymphopoiesis, and suggest that lesions in this miRNA gene may lead to primary immunodeficiency.


Assuntos
Linfócitos B/patologia , Deleção de Genes , Síndromes de Imunodeficiência/genética , Transtornos Imunoproliferativos/genética , Linfopoese , MicroRNAs/genética , Animais , Receptor do Fator Ativador de Células B/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Imunidade Celular , Imunidade Humoral , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Transtornos Imunoproliferativos/imunologia , Transtornos Imunoproliferativos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/imunologia
6.
Mol Cell Biol ; 27(6): 2240-52, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17242205

RESUMO

microRNAs (miRNAs) are abundant, approximately 21-nucleotide, noncoding regulatory RNAs. Each miRNA may regulate hundreds of mRNA targets, but the identities of these targets and the processes they regulate are poorly understood. Here we have explored the use of microarray profiling and functional screening to identify targets and biological processes triggered by the transfection of human cells with miRNAs. We demonstrate that a family of miRNAs sharing sequence identity with miRNA-16 (miR-16) negatively regulates cellular growth and cell cycle progression. miR-16-down-regulated transcripts were enriched with genes whose silencing by small interfering RNAs causes an accumulation of cells in G(0)/G(1). Simultaneous silencing of these genes was more effective at blocking cell cycle progression than disruption of the individual genes. Thus, miR-16 coordinately regulates targets that may act in concert to control cell cycle progression.


Assuntos
Ciclo Celular/genética , Ciclo Celular/fisiologia , MicroRNAs/classificação , MicroRNAs/genética , Família Multigênica/genética , Transcrição Gênica , Linhagem Celular , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA